Search results for "Spallation Neutron Source"
showing 10 items of 10 documents
Probing neutrino magnetic moments at the Spallation Neutron Source facility
2015
24 pages.- 8 figures
Neutron measurements for advanced nuclear systems: The n_TOF project at CERN
2012
A few years ago, the neutron time-of-flight facility n_TOF was built at CERN to address some of the urgent needs of high-accuracy nuclear data for Accelerator Driven Systems and other advanced nuclear energy systems, as well as for nuclear astrophysics and fundamental nuclear physics. Thanks to the characteristics of the neutron beam, and to state-of-the-art detection and acquisition systems, high quality neutron cross-section data have been obtained for a variety of isotopes, many of which radioactive. Following an important upgrade of the spallation target and of the experimental area, a new measurement campaign has started last year. After a brief review of the most important results obt…
Coherent elastic neutrino-nucleus scattering at the European Spallation Source
2020
The European Spallation Source (ESS), presently well on its way to completion, will soon provide the most intense neutron beams for multi-disciplinary science. Fortuitously, it will also generate the largest pulsed neutrino flux suitable for the detection of Coherent Elastic Neutrino-Nucleus Scattering (CE$\nu$NS), a process recently measured for the first time at ORNL's Spallation Neutron Source. We describe innovative detector technologies maximally able to profit from the order-of-magnitude increase in neutrino flux provided by the ESS, along with their sensitivity to a rich particle physics phenomenology accessible through high-statistics, precision CE$\nu$NS measurements.
Neutrino transition magnetic moments within the non-standard neutrino-nucleus interactions
2015
Tensorial non-standard neutrino interactions are studied through a combined analysis of nuclear structure calculations and a sensitivity $\chi^2$-type of neutrino events expected to be measured at the COHERENT experiment, recently planned to operate at the Spallation Neutron Source (Oak Ridge). Potential sizeable predictions on transition neutrino magnetic moments and other electromagnetic parameters, such as neutrino milli-charges, are also addressed. The non-standard neutrino-nucleus processes, explored from nuclear physics perspectives within the context of quasi-particle random phase approximation, are exploited in order to estimate the expected number of events originating from vector …
Riga experience in spallation neutron target related investigations
2002
Abstract Mercury has awakened interest as a potential material for spallation neutron source targets. Institute of Physics, University of Latvia has a 30 years experience of investigations in mercury. As specially projected building includes a 350 m2 experimental hall. The largest loop, containing 5×103 kg of Hg, can be transferred for solution of different tasks. As the first example results are presented when integral developed pressure and local (distribution of void fraction) characteristics of a two-phase mercury/gas riser were investigated. Second example – investigation of velocity fields and heat transfer conditions close to the beam entrance window in the SINQ target thermohydrauli…
Gamma Ray Spectrum from Thermal Neutron Capture on Gadolinium-157
2018
International audience; We have measured the |$\gamma$|-ray energy spectrum from the thermal neutron capture, |${}^{157}$|Gd|$(n,\gamma)$|, on an enriched |$^{157}$|Gd target (Gd|$_{2}$|O|$_{3}$|) in the energy range from 0.11 MeV up to about 8 MeV. The target was placed inside the germanium spectrometer of the ANNRI detector at J-PARC and exposed to a neutron beam from the Japan Spallation Neutron Source (JSNS). Radioactive sources (|$^{60}$|Co, |$^{137}$|Cs, and |$^{152}$|Eu) and the |$^{35}$|Cl(|$n$|,|$\gamma$|) reaction were used to determine the spectrometer‘s detection efficiency for |$\gamma$| rays at energies from 0.3 to 8.5 MeV. Using a Geant4-based Monte Carlo simulation of …
Future CEvNS experiments as probes of lepton unitarity and light-sterile neutrinos
2020
We determine the sensitivities of short-baseline coherent elastic neutrino-nucleus scattering (CE$\nu$NS) experiments using a pion decay at rest neutrino source as a probe for nonunitarity in the lepton sector, as expected in low-scale type-I seesaw schemes. We also identify the best configuration for probing light sterile neutrinos at future ton-scale liquid argon CE$\nu$NS experiments, estimating the projected sensitivities on the sterile neutrino parameters. Possible experimental setups at the Spallation Neutron Source, Lujan facility and the European Spallation Source are discussed. Provided that systematic uncertainties remain under control, we find that CE$\nu$NS experiments will be c…
Simulation of H- ion source extraction systems for the Spallation Neutron Source with Ion Beam Simulator.
2012
A three-dimensional ion optical code IBSimu, which is being developed at the University of Jyväskylä, features positive and negative ion plasma extraction models and self-consistent space charge calculation. The code has been utilized for modeling the existing extraction system of the H(-) ion source of the Spallation Neutron Source. Simulation results are in good agreement with experimental data. A high-current extraction system with downstream electron dumping at intermediate energy has been designed. According to the simulations it provides lower emittance compared to the baseline system at H(-) currents exceeding 40 mA. A magnetic low energy beam transport section consisting of two sole…
Determining the nuclear neutron distribution from Coherent Elastic neutrino-Nucleus Scattering: current results and future prospects
2020
Coherent Elastic neutrino-Nucleus Scattering (CEνNS), a process recently measured for the first time at ORNL’s Spallation Neutron Source, is directly sensitive to the weak form factor of the nucleus. The European Spallation Source (ESS), presently under construction, will generate the most intense pulsed neutrino flux suitable for the detection of CEνNS. In this paper we quantify its potential to determine the root mean square radius of the point-neutron distribution, for a variety of target nuclei and a suite of detectors. To put our results in context we also derive, for the first time, a constraint on this parameter from the analysis of the energy and timing data of the CsI detector at t…
Study of the Ti44(α,p)V47 reaction and implications for core collapse supernovae
2014
The underlying physics triggering core collapse supernovae is not fully understood but observations of material ejected during such events helps to solve this puzzle. In particular, several satellite based γ-ray observations of the isotope 44Ti have been reported recently. Conveniently, the amount of this isotope in stellar ejecta is thought to depend critically on the explosion mechanism. The most influential reaction to the amount of 44Ti in supernovae is Ti44(α,p)V47. Here we report on a direct study of this reaction conducted at the REX-ISOLDE facility, CERN. The experiment was performed with a 44Ti beam at Elab = 2.16MeV/u, corresponding to an energy distribution, for reacting α-partic…